Linear combination = 기본변형 (eg. v1, 3v1-1v2+1/2v3)

 

Span: set of all linear combinations of the vectors (기본변형으로 만들 있는 모든 벡터들)

 

Linear combination 통한 matrix multiplication inner product & outer product 계산 방법 존재

 

Linearly independent: only one solution (trivial solution)

 

Linearly dependent: other nontrivial solutions / linearly dependent set produces multiple possible linear combinations.

 

Subspace: a subset of R^n closed under linear combination

              ==> a subspace is always represented as Span{v1, …, vp}

Basis of a subspace: set of vectors that satisfies (1) fully spans the given subspace H (2)linearly independent

•eg. H = Span{v1, v2, v3} è Span{v1, v2} forms a plane, but v3=2v1+3v2 Span{v1, v2} è {v1, v2} is a basis of H, but not {v1, v2, v3} nor {v1} is a basis.

•Basis is not unique

•BUT, 어떤 종류의 basis라도 basis 있는 벡터의 갯수=dimension unique!)

Column Space

(eg. Linearly dependent columns)

 

Rank of matrix A = dim Col A

 

 

Linear Tranformation(선형 변환)

 

 

+ Recent posts